翻訳と辞書
Words near each other
・ Ihor Baluta
・ Ihor Bazhan
・ Ihor Bendovskyi
・ Ihor Berezovskyi
・ Ihor Bodnar
・ Ihor Bodrov
・ Ihor Borysyk
・ Ihor Brovko
・ Ihor Buryak
・ Ihor Bykovskyi
・ Ihor Chaykovskyi
・ Ihor Cherednychenko
・ Ihara
・ Ihara District, Shizuoka
・ Ihara Saikaku
Ihara zeta function
・ Ihara's lemma
・ Iharaira Te Houkamau
・ Iharanosato Station
・ Iharkutosuchus
・ Iharos
・ Iharosberény
・ Ihasalu
・ Ihaste
・ Ihatovo Monogatari
・ Ihavandhoo (Haa Alif Atoll)
・ Ihavandhoo Health Centre
・ Ihavandhoo Kandu
・ IHB
・ IHC


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Ihara zeta function : ウィキペディア英語版
Ihara zeta function
In mathematics, the Ihara zeta-function is a zeta function associated with a finite graph. It closely resembles the Selberg zeta-function, and is used to relate closed paths to the spectrum of the adjacency matrix. The Ihara zeta-function was first defined by Yasutaka Ihara in the 1960s in the context of discrete subgroups of the two-by-two p-adic special linear group. Jean-Pierre Serre suggested in his book ''Trees'' that Ihara's original definition can be reinterpreted graph-theoretically. It was Toshikazu Sunada who put this suggestion into practice (1985). As observed by Sunada, a regular graph is a Ramanujan graph if and only if its Ihara zeta function satisfies an analogue of the Riemann hypothesis.〔Terras (1999) p.678〕
==Definition==

The Ihara zeta-function can be defined by a formula analogous to the Euler product for the Riemann zeta function:
:\frac = \prod_ (, u_0) such that
: (u_i, u_) \in E~; \quad u_i \neq u_,
and L(p) is the length of cycle ''p'', as used in the formulae above.〔Terras (2010) p.12〕 This formulation in graph-theoretic setting is due to Sunada.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Ihara zeta function」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.